1 Star 0 Fork 35

zky894064933 / fucking-algorithm

forked from 杨孜 / fucking-algorithm 
Create your Gitee Account
Explore and code with more than 12 million developers,Free private repositories !:)
Sign up
This repository doesn't specify license. Please pay attention to the specific project description and its upstream code dependency when using it.
Clone or Download
动态规划之博弈问题.md 9.88 KB
Copy Edit Raw Blame History
labuladong authored 2020-02-29 15:33 . 添加页脚跳转

动态规划之博弈问题

上一篇文章 几道智力题 中讨论到一个有趣的「石头游戏」,通过题目的限制条件,这个游戏是先手必胜的。但是智力题终究是智力题,真正的算法问题肯定不会是投机取巧能搞定的。所以,本文就借石头游戏来讲讲「假设两个人都足够聪明,最后谁会获胜」这一类问题该如何用动态规划算法解决。

博弈类问题的套路都差不多,下文举例讲解,其核心思路是在二维 dp 的基础上使用元组分别存储两个人的博弈结果。掌握了这个技巧以后,别人再问你什么俩海盗分宝石,俩人拿硬币的问题,你就告诉别人:我懒得想,直接给你写个算法算一下得了。

我们「石头游戏」改的更具有一般性:

你和你的朋友面前有一排石头堆,用一个数组 piles 表示,piles[i] 表示第 i 堆石子有多少个。你们轮流拿石头,一次拿一堆,但是只能拿走最左边或者最右边的石头堆。所有石头被拿完后,谁拥有的石头多,谁获胜。

石头的堆数可以是任意正整数,石头的总数也可以是任意正整数,这样就能打破先手必胜的局面了。比如有三堆石头 piles = [1, 100, 3],先手不管拿 1 还是 3,能够决定胜负的 100 都会被后手拿走,后手会获胜。

假设两人都很聪明,请你设计一个算法,返回先手和后手的最后得分(石头总数)之差。比如上面那个例子,先手能获得 4 分,后手会获得 100 分,你的算法应该返回 -96。

这样推广之后,这个问题算是一道 Hard 的动态规划问题了。博弈问题的难点在于,两个人要轮流进行选择,而且都贼精明,应该如何编程表示这个过程呢?

还是强调多次的套路,首先明确 dp 数组的含义,然后和股票买卖系列问题类似,只要找到「状态」和「选择」,一切就水到渠成了。

一、定义 dp 数组的含义

定义 dp 数组的含义是很有技术含量的,同一问题可能有多种定义方法,不同的定义会引出不同的状态转移方程,不过只要逻辑没有问题,最终都能得到相同的答案。

我建议不要迷恋那些看起来很牛逼,代码很短小的奇技淫巧,最好是稳一点,采取可解释性最好,最容易推广的设计思路。本文就给出一种博弈问题的通用设计框架。

介绍 dp 数组的含义之前,我们先看一下 dp 数组最终的样子:

1

下文讲解时,认为元组是包含 first 和 second 属性的一个类,而且为了节省篇幅,将这两个属性简写为 fir 和 sec。比如按上图的数据,我们说 dp[1][3].fir = 10dp[0][1].sec = 3

先回答几个读者可能提出的问题:

这个二维 dp table 中存储的是元组,怎么编程表示呢?这个 dp table 有一半根本没用上,怎么优化?很简单,都不要管,先把解题的思路想明白了再谈也不迟。

以下是对 dp 数组含义的解释:

dp[i][j].fir 表示对于 piles[i...j] 这部分石头堆先手能获得的最高分数
dp[i][j].sec 表示对于 piles[i...j] 这部分石头堆后手能获得的最高分数

举例理解一下假设 piles = [3, 9, 1, 2]索引从 0 开始
dp[0][1].fir = 9 意味着面对石头堆 [3, 9]先手最终能够获得 9 
dp[1][3].sec = 2 意味着面对石头堆 [9, 1, 2]后手最终能够获得 2 

我们想求的答案是先手和后手最终分数之差,按照这个定义也就是 $dp[0][n-1].fir - dp[0][n-1].sec$,即面对整个 piles,先手的最优得分和后手的最优得分之差。

二、状态转移方程

写状态转移方程很简单,首先要找到所有「状态」和每个状态可以做的「选择」,然后择优。

根据前面对 dp 数组的定义,状态显然有三个:开始的索引 i,结束的索引 j,当前轮到的人。

dp[i][j][fir or sec]
其中
0 <= i < piles.length
i <= j < piles.length

对于这个问题的每个状态,可以做的选择有两个:选择最左边的那堆石头,或者选择最右边的那堆石头。 我们可以这样穷举所有状态:

n = piles.length
for 0 <= i < n:
    for j <= i < n:
        for who in {fir, sec}:
            dp[i][j][who] = max(left, right)

上面的伪码是动态规划的一个大致的框架,股票系列问题中也有类似的伪码。这道题的难点在于,两人是交替进行选择的,也就是说先手的选择会对后手有影响,这怎么表达出来呢?

根据我们对 dp 数组的定义,很容易解决这个难点,写出状态转移方程:

dp[i][j].fir = max(piles[i] + dp[i+1][j].sec, piles[j] + dp[i][j-1].sec)
dp[i][j].fir = max(    选择最左边的石头堆     ,     选择最右边的石头堆     )
# 解释:我作为先手,面对 piles[i...j] 时,有两种选择:
# 要么我选择最左边的那一堆石头,然后面对 piles[i+1...j]
# 但是此时轮到对方,相当于我变成了后手;
# 要么我选择最右边的那一堆石头,然后面对 piles[i...j-1]
# 但是此时轮到对方,相当于我变成了后手。

if 先手选择左边:
    dp[i][j].sec = dp[i+1][j].fir
if 先手选择右边:
    dp[i][j].sec = dp[i][j-1].fir
# 解释:我作为后手,要等先手先选择,有两种情况:
# 如果先手选择了最左边那堆,给我剩下了 piles[i+1...j]
# 此时轮到我,我变成了先手;
# 如果先手选择了最右边那堆,给我剩下了 piles[i...j-1]
# 此时轮到我,我变成了先手。

根据 dp 数组的定义,我们也可以找出 base case,也就是最简单的情况:

dp[i][j].fir = piles[i]
dp[i][j].sec = 0
其中 0 <= i == j < n
# 解释:i 和 j 相等就是说面前只有一堆石头 piles[i]
# 那么显然先手的得分为 piles[i]
# 后手没有石头拿了,得分为 0

2

这里需要注意一点,我们发现 base case 是斜着的,而且我们推算 dp[i][j] 时需要用到 dp[i+1][j] 和 dp[i][j-1]:

3

所以说算法不能简单的一行一行遍历 dp 数组,而要斜着遍历数组:

4

说实话,斜着遍历二维数组说起来容易,你还真不一定能想出来怎么实现,不信你思考一下?这么巧妙的状态转移方程都列出来了,要是不会写代码实现,那真的很尴尬了。

三、代码实现

如何实现这个 fir 和 sec 元组呢,你可以用 python,自带元组类型;或者使用 C++ 的 pair 容器;或者用一个三维数组 dp[n][n][2],最后一个维度就相当于元组;或者我们自己写一个 Pair 类:

class Pair {
    int fir, sec;
    Pair(int fir, int sec) {
        this.fir = fir;
        this.sec = sec;
    }
}

然后直接把我们的状态转移方程翻译成代码即可,可以注意一下斜着遍历数组的技巧:

/* 返回游戏最后先手和后手的得分之差 */
int stoneGame(int[] piles) {
    int n = piles.length;
    // 初始化 dp 数组
    Pair[][] dp = new Pair[n][n];
    for (int i = 0; i < n; i++) 
        for (int j = i; j < n; j++)
            dp[i][j] = new Pair(0, 0);
    // 填入 base case
    for (int i = 0; i < n; i++) {
        dp[i][i].fir = piles[i];
        dp[i][i].sec = 0;
    }
    // 斜着遍历数组
    for (int l = 2; l <= n; l++) {
        for (int i = 0; i <= n - l; i++) {
            int j = l + i - 1;
            // 先手选择最左边或最右边的分数
            int left = piles[i] + dp[i+1][j].sec;
            int right = piles[j] + dp[i][j-1].sec;
            // 套用状态转移方程
            if (left > right) {
                dp[i][j].fir = left;
                dp[i][j].sec = dp[i+1][j].fir;
            } else {
                dp[i][j].fir = right;
                dp[i][j].sec = dp[i][j-1].fir;
            }
        }
    }
    Pair res = dp[0][n-1];
    return res.fir - res.sec;
}

动态规划解法,如果没有状态转移方程指导,绝对是一头雾水,但是根据前面的详细解释,读者应该可以清晰理解这一大段代码的含义。

而且,注意到计算 dp[i][j] 只依赖其左边和下边的元素,所以说肯定有优化空间,转换成一维 dp,想象一下把二维平面压扁,也就是投影到一维。但是,一维 dp 比较复杂,可解释性很差,大家就不必浪费这个时间去理解了。

四、最后总结

本文给出了解决博弈问题的动态规划解法。博弈问题的前提一般都是在两个聪明人之间进行,编程描述这种游戏的一般方法是二维 dp 数组,数组中通过元组分别表示两人的最优决策。

之所以这样设计,是因为先手在做出选择之后,就成了后手,后手在对方做完选择后,就变成了先手。这种角色转换使得我们可以重用之前的结果,典型的动态规划标志。

读到这里的朋友应该能理解算法解决博弈问题的套路了。学习算法,一定要注重算法的模板框架,而不是一些看起来牛逼的思路,也不要奢求上来就写一个最优的解法。不要舍不得多用空间,不要过早尝试优化,不要惧怕多维数组。dp 数组就是存储信息避免重复计算的,随便用,直到咱满意为止。

希望本文对你有帮助。

致力于把算法讲清楚!欢迎关注我的微信公众号 labuladong,查看更多通俗易懂的文章

labuladong

上一篇:动态规划之子序列问题解题模板

下一篇:贪心算法之区间调度问题

目录

1
https://gitee.com/zky1016/fucking-algorithm.git
git@gitee.com:zky1016/fucking-algorithm.git
zky1016
fucking-algorithm
fucking-algorithm
master

Search