5 Star 9 Fork 1

Gitee 极速下载 / annoy

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/spotify/annoy
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

Annoy

Annoy example

Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given query point. It also creates large read-only file-based data structures that are mmapped into memory so that many processes may share the same data.

Install

To install, simply do pip install --user annoy to pull down the latest version from PyPI.

For the C++ version, just clone the repo and #include "annoylib.h".

Background

There are some other libraries to do nearest neighbor search. Annoy is almost as fast as the fastest libraries, (see below), but there is actually another feature that really sets Annoy apart: it has the ability to use static files as indexes. In particular, this means you can share index across processes. Annoy also decouples creating indexes from loading them, so you can pass around indexes as files and map them into memory quickly. Another nice thing of Annoy is that it tries to minimize memory footprint so the indexes are quite small.

Why is this useful? If you want to find nearest neighbors and you have many CPU's, you only need to build the index once. You can also pass around and distribute static files to use in production environment, in Hadoop jobs, etc. Any process will be able to load (mmap) the index into memory and will be able to do lookups immediately.

We use it at Spotify for music recommendations. After running matrix factorization algorithms, every user/item can be represented as a vector in f-dimensional space. This library helps us search for similar users/items. We have many millions of tracks in a high-dimensional space, so memory usage is a prime concern.

Annoy was built by Erik Bernhardsson in a couple of afternoons during Hack Week.

Summary of features

  • Euclidean distance, Manhattan distance, cosine distance, Hamming distance, or Dot (Inner) Product distance
  • Cosine distance is equivalent to Euclidean distance of normalized vectors = sqrt(2-2*cos(u, v))
  • Works better if you don't have too many dimensions (like <100) but seems to perform surprisingly well even up to 1,000 dimensions
  • Small memory usage
  • Lets you share memory between multiple processes
  • Index creation is separate from lookup (in particular you can not add more items once the tree has been created)
  • Native Python support, tested with 2.7, 3.6, and 3.7.
  • Build index on disk to enable indexing big datasets that won't fit into memory (contributed by Rene Hollander)

Python code example

from annoy import AnnoyIndex
import random

f = 40  # Length of item vector that will be indexed

t = AnnoyIndex(f, 'angular')
for i in range(1000):
    v = [random.gauss(0, 1) for z in range(f)]
    t.add_item(i, v)

t.build(10) # 10 trees
t.save('test.ann')

# ...

u = AnnoyIndex(f, 'angular')
u.load('test.ann') # super fast, will just mmap the file
print(u.get_nns_by_item(0, 1000)) # will find the 1000 nearest neighbors

Right now it only accepts integers as identifiers for items. Note that it will allocate memory for max(id)+1 items because it assumes your items are numbered 0 … n-1. If you need other id's, you will have to keep track of a map yourself.

Full Python API

  • AnnoyIndex(f, metric) returns a new index that's read-write and stores vector of f dimensions. Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot".
  • a.add_item(i, v) adds item i (any nonnegative integer) with vector v. Note that it will allocate memory for max(i)+1 items.
  • a.build(n_trees, n_jobs=-1) builds a forest of n_trees trees. More trees gives higher precision when querying. After calling build, no more items can be added. n_jobs specifies the number of threads used to build the trees. n_jobs=-1 uses all available CPU cores.
  • a.save(fn, prefault=False) saves the index to disk and loads it (see next function). After saving, no more items can be added.
  • a.load(fn, prefault=False) loads (mmaps) an index from disk. If prefault is set to True, it will pre-read the entire file into memory (using mmap with MAP_POPULATE). Default is False.
  • a.unload() unloads.
  • a.get_nns_by_item(i, n, search_k=-1, include_distances=False) returns the n closest items. During the query it will inspect up to search_k nodes which defaults to n_trees * n if not provided. search_k gives you a run-time tradeoff between better accuracy and speed. If you set include_distances to True, it will return a 2 element tuple with two lists in it: the second one containing all corresponding distances.
  • a.get_nns_by_vector(v, n, search_k=-1, include_distances=False) same but query by vector v.
  • a.get_item_vector(i) returns the vector for item i that was previously added.
  • a.get_distance(i, j) returns the distance between items i and j. NOTE: this used to return the squared distance, but has been changed as of Aug 2016.
  • a.get_n_items() returns the number of items in the index.
  • a.get_n_trees() returns the number of trees in the index.
  • a.on_disk_build(fn) prepares annoy to build the index in the specified file instead of RAM (execute before adding items, no need to save after build)
  • a.set_seed(seed) will initialize the random number generator with the given seed. Only used for building up the tree, i. e. only necessary to pass this before adding the items. Will have no effect after calling a.build(n_trees) or a.load(fn).

Notes:

  • There's no bounds checking performed on the values so be careful.
  • Annoy uses Euclidean distance of normalized vectors for its angular distance, which for two vectors u,v is equal to sqrt(2(1-cos(u,v)))

The C++ API is very similar: just #include "annoylib.h" to get access to it.

Tradeoffs

There are just two main parameters needed to tune Annoy: the number of trees n_trees and the number of nodes to inspect during searching search_k.

  • n_trees is provided during build time and affects the build time and the index size. A larger value will give more accurate results, but larger indexes.
  • search_k is provided in runtime and affects the search performance. A larger value will give more accurate results, but will take longer time to return.

If search_k is not provided, it will default to n * n_trees where n is the number of approximate nearest neighbors. Otherwise, search_k and n_trees are roughly independent, i.e. the value of n_trees will not affect search time if search_k is held constant and vice versa. Basically it's recommended to set n_trees as large as possible given the amount of memory you can afford, and it's recommended to set search_k as large as possible given the time constraints you have for the queries.

You can also accept slower search times in favour of reduced loading times, memory usage, and disk IO. On supported platforms the index is prefaulted during load and save, causing the file to be pre-emptively read from disk into memory. If you set prefault to False, pages of the mmapped index are instead read from disk and cached in memory on-demand, as necessary for a search to complete. This can significantly increase early search times but may be better suited for systems with low memory compared to index size, when few queries are executed against a loaded index, and/or when large areas of the index are unlikely to be relevant to search queries.

How does it work

Using random projections and by building up a tree. At every intermediate node in the tree, a random hyperplane is chosen, which divides the space into two subspaces. This hyperplane is chosen by sampling two points from the subset and taking the hyperplane equidistant from them.

We do this k times so that we get a forest of trees. k has to be tuned to your need, by looking at what tradeoff you have between precision and performance.

Hamming distance (contributed by Martin Aumüller) packs the data into 64-bit integers under the hood and uses built-in bit count primitives so it could be quite fast. All splits are axis-aligned.

Dot Product distance (contributed by Peter Sobot and Pavel Korobov) reduces the provided vectors from dot (or "inner-product") space to a more query-friendly cosine space using a method by Bachrach et al., at Microsoft Research, published in 2014.

More info

ANN benchmarks

Source code

It's all written in C++ with a handful of ugly optimizations for performance and memory usage. You have been warned :)

The code should support Windows, thanks to Qiang Kou and Timothy Riley.

To run the tests, execute python setup.py nosetests. The test suite includes a big real world dataset that is downloaded from the internet, so it will take a few minutes to execute.

Discuss

Feel free to post any questions or comments to the annoy-user group. I'm @fulhack on Twitter.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright 2021 (c) Spotify and its affiliates. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

Annoy 是 Spotify 开源的高维空间求近似最近邻的库,在 Spotify 使用它进行音乐推荐 展开 收起
C++ 等 6 种语言
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
C++
1
https://gitee.com/mirrors/annoy.git
git@gitee.com:mirrors/annoy.git
mirrors
annoy
annoy
main

搜索帮助