3 Star 5 Fork 3

deepmodeling / dpdata

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
LGPL-3.0

dpdata

conda-forge pip install Documentation Status

dpdata is a python package for manipulating data formats of software in computational science, including DeePMD-kit, VASP, LAMMPS, GROMACS, Gaussian. dpdata only works with python 3.7 or above.

Installation

One can download the source code of dpdata by

git clone https://github.com/deepmodeling/dpdata.git dpdata

then use pip to install the module from source

cd dpdata
pip install .

dpdata can also by install via pip without source

pip install dpdata

Quick start

This section gives some examples on how dpdata works. Firstly one needs to import the module in a python 3.x compatible code.

import dpdata

The typicall workflow of dpdata is

  1. Load data from vasp or lammps or deepmd-kit data files.
  2. Manipulate data
  3. Dump data to in a desired format

Load data

d_poscar = dpdata.System("POSCAR", fmt="vasp/poscar")

or let dpdata infer the format (vasp/poscar) of the file from the file name extension

d_poscar = dpdata.System("my.POSCAR")

The number of atoms, atom types, coordinates are loaded from the POSCAR and stored to a data System called d_poscar. A data System (a concept used by deepmd-kit) contains frames that has the same number of atoms of the same type. The order of the atoms should be consistent among the frames in one System. It is noted that POSCAR only contains one frame. If the multiple frames stored in, for example, a OUTCAR is wanted,

d_outcar = dpdata.LabeledSystem("OUTCAR")

The labels provided in the OUTCAR, i.e. energies, forces and virials (if any), are loaded by LabeledSystem. It is noted that the forces of atoms are always assumed to exist. LabeledSystem is a derived class of System.

The System or LabeledSystem can be constructed from the following file formats with the format key in the table passed to argument fmt:

Software format multi frames labeled class format key
vasp poscar False False System 'vasp/poscar'
vasp outcar True True LabeledSystem 'vasp/outcar'
vasp xml True True LabeledSystem 'vasp/xml'
lammps lmp False False System 'lammps/lmp'
lammps dump True False System 'lammps/dump'
deepmd raw True False System 'deepmd/raw'
deepmd npy True False System 'deepmd/npy'
deepmd raw True True LabeledSystem 'deepmd/raw'
deepmd npy True True LabeledSystem 'deepmd/npy'
deepmd npy True True MultiSystems 'deepmd/npy/mixed'
deepmd npy True False MultiSystems 'deepmd/npy/mixed'
gaussian log False True LabeledSystem 'gaussian/log'
gaussian log True True LabeledSystem 'gaussian/md'
siesta output False True LabeledSystem 'siesta/output'
siesta aimd_output True True LabeledSystem 'siesta/aimd_output'
cp2k(deprecated in future) output False True LabeledSystem 'cp2k/output'
cp2k(deprecated in future) aimd_output True True LabeledSystem 'cp2k/aimd_output'
cp2k(plug-in) stdout False True LabeledSystem 'cp2kdata/e_f'
cp2k(plug-in) stdout True True LabeledSystem 'cp2kdata/md'
QE log False True LabeledSystem 'qe/pw/scf'
QE log True False System 'qe/cp/traj'
QE log True True LabeledSystem 'qe/cp/traj'
Fhi-aims output True True LabeledSystem 'fhi_aims/md'
Fhi-aims output False True LabeledSystem 'fhi_aims/scf'
quip/gap xyz True True MultiSystems 'quip/gap/xyz'
PWmat atom.config False False System 'pwmat/atom.config'
PWmat movement True True LabeledSystem 'pwmat/movement'
PWmat OUT.MLMD True True LabeledSystem 'pwmat/out.mlmd'
Amber multi True True LabeledSystem 'amber/md'
Amber/sqm sqm.out False False System 'sqm/out'
Gromacs gro True False System 'gromacs/gro'
ABACUS STRU False False System 'abacus/stru'
ABACUS STRU False True LabeledSystem 'abacus/scf'
ABACUS cif True True LabeledSystem 'abacus/md'
ABACUS STRU True True LabeledSystem 'abacus/relax'
ase structure True True MultiSystems 'ase/structure'
DFTB+ dftbplus False True LabeledSystem 'dftbplus'
n2p2 n2p2 True True LabeledSystem 'n2p2'

The Class dpdata.MultiSystems can read data from a dir which may contains many files of different systems, or from single xyz file which contains different systems.

Use dpdata.MultiSystems.from_dir to read from a directory, dpdata.MultiSystems will walk in the directory Recursively and find all file with specific file_name. Supports all the file formats that dpdata.LabeledSystem supports.

Use dpdata.MultiSystems.from_file to read from single file. Single-file support is available for the quip/gap/xyz and ase/structure formats.

For example, for quip/gap xyz files, single .xyz file may contain many different configurations with different atom numbers and atom type.

The following commands relating to Class dpdata.MultiSystems may be useful.

# load data

xyz_multi_systems = dpdata.MultiSystems.from_file(
    file_name="tests/xyz/xyz_unittest.xyz", fmt="quip/gap/xyz"
)
vasp_multi_systems = dpdata.MultiSystems.from_dir(
    dir_name="./mgal_outcar", file_name="OUTCAR", fmt="vasp/outcar"
)

# use wildcard
vasp_multi_systems = dpdata.MultiSystems.from_dir(
    dir_name="./mgal_outcar", file_name="*OUTCAR", fmt="vasp/outcar"
)

# print the multi_system infomation
print(xyz_multi_systems)
print(xyz_multi_systems.systems)  # return a dictionaries

# print the system infomation
print(xyz_multi_systems.systems["B1C9"].data)

# dump a system's data to ./my_work_dir/B1C9_raw folder
xyz_multi_systems.systems["B1C9"].to_deepmd_raw("./my_work_dir/B1C9_raw")

# dump all systems
xyz_multi_systems.to_deepmd_raw("./my_deepmd_data/")

You may also use the following code to parse muti-system:

from dpdata import LabeledSystem, MultiSystems
from glob import glob

"""
process multi systems
"""
fs = glob("./*/OUTCAR")  # remeber to change here !!!
ms = MultiSystems()
for f in fs:
    try:
        ls = LabeledSystem(f)
    except:
        print(f)
    if len(ls) > 0:
        ms.append(ls)

ms.to_deepmd_raw("deepmd")
ms.to_deepmd_npy("deepmd")

Access data

These properties stored in System and LabeledSystem can be accessed by operator [] with the key of the property supplied, for example

coords = d_outcar["coords"]

Available properties are (nframe: number of frames in the system, natoms: total number of atoms in the system)

key type dimension are labels description
'atom_names' list of str ntypes False The name of each atom type
'atom_numbs' list of int ntypes False The number of atoms of each atom type
'atom_types' np.ndarray natoms False Array assigning type to each atom
'cells' np.ndarray nframes x 3 x 3 False The cell tensor of each frame
'coords' np.ndarray nframes x natoms x 3 False The atom coordinates
'energies' np.ndarray nframes True The frame energies
'forces' np.ndarray nframes x natoms x 3 True The atom forces
'virials' np.ndarray nframes x 3 x 3 True The virial tensor of each frame

Dump data

The data stored in System or LabeledSystem can be dumped in 'lammps/lmp' or 'vasp/poscar' format, for example:

d_outcar.to("lammps/lmp", "conf.lmp", frame_idx=0)

The first frames of d_outcar will be dumped to 'conf.lmp'

d_outcar.to("vasp/poscar", "POSCAR", frame_idx=-1)

The last frames of d_outcar will be dumped to 'POSCAR'.

The data stored in LabeledSystem can be dumped to deepmd-kit raw format, for example

d_outcar.to("deepmd/raw", "dpmd_raw")

Or a simpler command:

dpdata.LabeledSystem("OUTCAR").to("deepmd/raw", "dpmd_raw")

Frame selection can be implemented by

dpdata.LabeledSystem("OUTCAR").sub_system([0, -1]).to("deepmd/raw", "dpmd_raw")

by which only the first and last frames are dumped to dpmd_raw.

replicate

dpdata will create a super cell of the current atom configuration.

dpdata.System("./POSCAR").replicate(
    (
        1,
        2,
        3,
    )
)

tuple(1,2,3) means don't copy atom configuration in x direction, make 2 copys in y direction, make 3 copys in z direction.

perturb

By the following example, each frame of the original system (dpdata.System('./POSCAR')) is perturbed to generate three new frames. For each frame, the cell is perturbed by 5% and the atom positions are perturbed by 0.6 Angstrom. atom_pert_style indicates that the perturbation to the atom positions is subject to normal distribution. Other available options to atom_pert_style areuniform (uniform in a ball), and const (uniform on a sphere).

perturbed_system = dpdata.System("./POSCAR").perturb(
    pert_num=3,
    cell_pert_fraction=0.05,
    atom_pert_distance=0.6,
    atom_pert_style="normal",
)
print(perturbed_system.data)

replace

By the following example, Random 8 Hf atoms in the system will be replaced by Zr atoms with the atom postion unchanged.

s = dpdata.System("tests/poscars/POSCAR.P42nmc", fmt="vasp/poscar")
s.replace("Hf", "Zr", 8)
s.to_vasp_poscar("POSCAR.P42nmc.replace")

BondOrderSystem

A new class BondOrderSystem which inherits from class System is introduced in dpdata. This new class contains information of chemical bonds and formal charges (stored in BondOrderSystem.data['bonds'], BondOrderSystem.data['formal_charges']). Now BondOrderSystem can only read from .mol/.sdf formats, because of its dependency on rdkit (which means rdkit must be installed if you want to use this function). Other formats, such as pdb, must be converted to .mol/.sdf format (maybe with software like open babel).

import dpdata

system_1 = dpdata.BondOrderSystem(
    "tests/bond_order/CH3OH.mol", fmt="mol"
)  # read from .mol file
system_2 = dpdata.BondOrderSystem(
    "tests/bond_order/methane.sdf", fmt="sdf"
)  # read from .sdf file

In sdf file, all molecules must be of the same topology (i.e. conformers of the same molecular configuration). BondOrderSystem also supports initialize from a rdkit.Chem.rdchem.Mol object directly.

from rdkit import Chem
from rdkit.Chem import AllChem
import dpdata

mol = Chem.MolFromSmiles("CC")
mol = Chem.AddHs(mol)
AllChem.EmbedMultipleConfs(mol, 10)
system = dpdata.BondOrderSystem(rdkit_mol=mol)

Bond Order Assignment

The BondOrderSystem implements a more robust sanitize procedure for rdkit Mol, as defined in dpdata.rdkit.santizie.Sanitizer. This class defines 3 level of sanitization process by: low, medium and high. (default is medium).

  • low: use rdkit.Chem.SanitizeMol() function to sanitize molecule.
  • medium: before using rdkit, the programm will first assign formal charge of each atom to avoid inappropriate valence exceptions. However, this mode requires the rightness of the bond order information in the given molecule.
  • high: the program will try to fix inappropriate bond orders in aromatic hetreocycles, phosphate, sulfate, carboxyl, nitro, nitrine, guanidine groups. If this procedure fails to sanitize the given molecule, the program will then try to call obabel to pre-process the mol and repeat the sanitization procedure. That is to say, if you wan't to use this level of sanitization, please ensure obabel is installed in the environment. According to our test, our sanitization procedure can successfully read 4852 small molecules in the PDBBind-refined-set. It is necessary to point out that the in the molecule file (mol/sdf), the number of explicit hydrogens has to be correct. Thus, we recommend to use obabel xxx -O xxx -h to pre-process the file. The reason why we do not implement this hydrogen-adding procedure in dpdata is that we can not ensure its correctness.
import dpdata

for sdf_file in glob.glob("bond_order/refined-set-ligands/obabel/*sdf"):
    syst = dpdata.BondOrderSystem(sdf_file, sanitize_level="high", verbose=False)

Formal Charge Assignment

BondOrderSystem implement a method to assign formal charge for each atom based on the 8-electron rule (see below). Note that it only supports common elements in bio-system: B,C,N,O,P,S,As

import dpdata

syst = dpdata.BondOrderSystem("tests/bond_order/CH3NH3+.mol", fmt="mol")
print(syst.get_formal_charges())  # return the formal charge on each atom
print(syst.get_charge())  # return the total charge of the system

If a valence of 3 is detected on carbon, the formal charge will be assigned to -1. Because for most cases (in alkynyl anion, isonitrile, cyclopentadienyl anion), the formal charge on 3-valence carbon is -1, and this is also consisent with the 8-electron rule.

Mixed Type Format

The format deepmd/npy/mixed is the mixed type numpy format for DeePMD-kit, and can be loaded or dumped through class dpdata.MultiSystems.

Under this format, systems with the same number of atoms but different formula can be put together for a larger system, especially when the frame numbers in systems are sparse.

This also helps to mixture the type information together for model training with type embedding network.

Here are examples using deepmd/npy/mixed format:

  • Dump a MultiSystems into a mixed type numpy directory:
import dpdata

dpdata.MultiSystems(*systems).to_deepmd_npy_mixed("mixed_dir")
  • Load a mixed type data into a MultiSystems:
import dpdata

dpdata.MultiSystems().load_systems_from_file("mixed_dir", fmt="deepmd/npy/mixed")

Plugins

One can follow a simple example to add their own format by creating and installing plugins. It's critical to add the Format class to entry_points['dpdata.plugins'] in pyproject.toml:

[project.entry-points.'dpdata.plugins']
random = "dpdata_random:RandomFormat"
GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below. 0. Additional Definitions. As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General Public License. "The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below. An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library. A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the "Linked Version". The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version. The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work. 1. Exception to Section 3 of the GNU GPL. You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL. 2. Conveying Modified Versions. If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version: a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy. 3. Object Code Incorporating Material from Library Header Files. The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following: a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the object code with a copy of the GNU GPL and this license document. 4. Combined Works. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following: a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the Combined Work with a copy of the GNU GPL and this license document. c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document. d) Do one of the following: 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source. 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.) 5. Combined Libraries. You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License. b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 6. Revised Versions of the GNU Lesser General Public License. The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.

简介

Manipulating DeePMD-kit, VASP, LAMMPS data formats. 展开 收起
Python 等 3 种语言
LGPL-3.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
Python
1
https://gitee.com/deepmodeling/dpdata.git
git@gitee.com:deepmodeling/dpdata.git
deepmodeling
dpdata
dpdata
master

搜索帮助