3 Star 15 Fork 4

建伟F4nniu / FN1895E-MCU101

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
MCU038.md 7.65 KB
一键复制 编辑 原始数据 按行查看 历史
建伟F4nniu 提交于 2016-12-23 00:30 . Track 5 files into repository.

#第三十八节:判断数据尾来接收一串数据的串口通用程序框架。

开场白:

在实际项目中,串口通讯不可能一次通讯只发送或接收一个字节,大部分的项目都是一次发送或者接受一串的数据。我们还要在这一串数据里解析数据协议,提取有用的数据。

这一节要教会大家三个知识点:

  • 第一个:如何识别一串数据已经发送接收完毕。
  • 第二个:如何在已经接收到的一串数据中解析数据尾协议并且提取有效数据。
  • 第三个:接收一串数据的通用程序框架涉及到main循环里的串口服务程序,定时器的计时程序,串口接收中断程序的密切配合。大家要理解它们三者之间是如何关联起来的。

具体内容,请看源代码讲解。

  • (1)硬件平台:
  • 基于朱兆祺51单片机学习板。
  • (2)实现功能:
  • 通讯协议:XX YY EB 00 55
  • 其中后三位 EB 00 55就是我所说的数据尾,它的有效数据XX YY在数据尾的前面。
  • 任意时刻,单片机从电脑“串口调试助手”上位机收到的一串数据中,只要此数据中包含关键字EB 00 55 ,并且此关键字前面两个字节的数据XX YY 分别为01 02,那么蜂鸣器鸣叫一声表示接收的数据尾和有效数据都是正确的。
  • (3)源代码讲解如下:
#include "REG52.H"


#define const_voice_short  40   //蜂鸣器短叫的持续时间
#define const_rc_size  10  //接收串口中断数据的缓冲区数组大小

#define const_receive_time  5  //如果超过这个时间没有串口数据过来,就认为一串数据已经全部接收完,这个时间根据实际情况来调整大小

void initial_myself(void);
void initial_peripheral(void);
void delay_long(unsigned int uiDelaylong);



void T0_time(void);  //定时中断函数
void usart_receive(void); //串口接收中断函数
void usart_service(void);  //串口服务程序,在main函数里

sbit beep_dr = P2 ^ 7; //蜂鸣器的驱动IO口

unsigned int  uiSendCnt = 0;   //用来识别串口是否接收完一串数据的计时器
unsigned char ucSendLock = 1;  //串口服务程序的自锁变量,每次接收完一串数据只处理一次
unsigned int  uiRcregTotal = 0; //代表当前缓冲区已经接收了多少个数据
unsigned char ucRcregBuf[const_rc_size]; //接收串口中断数据的缓冲区数组
unsigned int  uiRcMoveIndex = 0; //用来解析数据协议的中间变量


unsigned int  uiVoiceCnt = 0; //蜂鸣器鸣叫的持续时间计数器



void main()
{
    initial_myself();
    delay_long(100);
    initial_peripheral();
    while(1)
    {
        usart_service();  //串口服务程序
    }

}


void usart_service(void)  //串口服务程序,在main函数里
{


    /* 注释一:
    * 识别一串数据是否已经全部接收完了的原理:
    * 在规定的时间里,如果没有接收到任何一个字节数据,那么就认为一串数据被接收完了,然后就进入数据协议
    * 解析和处理的阶段。这个功能的实现要配合定时中断,串口中断的程序一起阅读,要理解他们之间的关系。
    */
    if(uiSendCnt >= const_receive_time && ucSendLock == 1) //说明超过了一定的时间内,再也没有新数据从串口来
    {

        ucSendLock = 0;  //处理一次就锁起来,不用每次都进来,除非有新接收的数据

        //下面的代码进入数据协议解析和数据处理的阶段

        uiRcMoveIndex = uiRcregTotal; //由于是判断数据尾,所以下标移动变量从数组的最尾端开始向0移动
        while(uiRcMoveIndex >= 5) //如果处理的数据量大于等于5(2个有效数据,3个数据头)说明还没有把缓冲区的数据处理完
        {
            if(ucRcregBuf[uiRcMoveIndex - 3] == 0xeb && ucRcregBuf[uiRcMoveIndex - 2] == 0x00 && ucRcregBuf[uiRcMoveIndex - 1] == 0x55) //数据尾eb 00 55的判断
            {
                if(ucRcregBuf[uiRcMoveIndex - 5] == 0x01 && ucRcregBuf[uiRcMoveIndex - 4] == 0x02) //有效数据01 02的判断
                {
                    uiVoiceCnt = const_voice_short; //蜂鸣器发出声音,说明数据尾和有效数据都接收正确
                }
                break;   //退出循环
            }
            uiRcMoveIndex--; //因为是判断数据尾,下标向着0的方向移动
        }

        uiRcregTotal = 0; //清空缓冲的下标,方便下次重新从0下标开始接受新数据

    }

}


void T0_time(void) interrupt 1    //定时中断
{
    TF0 = 0; //清除中断标志
    TR0 = 0; //关中断


    if(uiSendCnt < const_receive_time) //如果超过这个时间没有串口数据过来,就认为一串数据已经全部接收完
    {
        uiSendCnt++;    //表面上这个数据不断累加,但是在串口中断里,每接收一个字节它都会被清零,除非这个中间没有串口数据过来
        ucSendLock = 1;   //开自锁标志
    }

    if(uiVoiceCnt != 0)
    {
        uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫
        beep_dr = 0; //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。

    }
    else
    {
        ; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。
        beep_dr = 1; //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
    }


    TH0 = 0xfe; //重装初始值(65535-500)=65035=0xfe0b
    TL0 = 0x0b;
    TR0 = 1; //开中断
}


void usart_receive(void) interrupt 4                 //串口接收数据中断
{

    if(RI == 1)
    {
        RI = 0;

        ++uiRcregTotal;
        if(uiRcregTotal > const_rc_size) //超过缓冲区
        {
            uiRcregTotal = const_rc_size;
        }
        ucRcregBuf[uiRcregTotal - 1] = SBUF; //将串口接收到的数据缓存到接收缓冲区里
        uiSendCnt = 0; //及时喂狗,虽然main函数那边不断在累加,但是只要串口的数据还没发送完毕,那么它永远也长不大,因为每个中断都被清零。

    }
    else  //我在其它单片机上都不用else这段代码的,可能在51单片机上多增加" TI = 0;"稳定性会更好吧。
    {
        TI = 0;
    }

}


void delay_long(unsigned int uiDelayLong)
{
    unsigned int i;
    unsigned int j;
    for(i = 0; i < uiDelayLong; i++)
    {
        for(j = 0; j < 500; j++) //内嵌循环的空指令数量
        {
            ; //一个分号相当于执行一条空语句
        }
    }
}


void initial_myself(void)  //第一区 初始化单片机
{

    beep_dr = 1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。

    //配置定时器
    TMOD = 0x01; //设置定时器0为工作方式1
    TH0 = 0xfe; //重装初始值(65535-500)=65035=0xfe0b
    TL0 = 0x0b;


    //配置串口
    SCON = 0x50;
    TMOD = 0X21;
    TH1 = TL1 = -(11059200L / 12 / 32 / 9600); //这段配置代码具体是什么意思,我也不太清楚,反正是跟串口波特率有关。
    TR1 = 1;

}

void initial_peripheral(void) //第二区 初始化外围
{

    EA = 1;   //开总中断
    ES = 1;   //允许串口中断
    ET0 = 1;  //允许定时中断
    TR0 = 1;  //启动定时中断

}

总结陈词:

这一节讲了判断数据尾的程序框架,但是在大部分的项目中,都是通过判断数据头来接收数据的,这样的程序该怎么写?欲知详情,请听下回分解-----判断数据头来接收一串数据的串口通用程序框架。

(未完待续,下节更精彩,不要走开哦)

C
1
https://gitee.com/F4NNIU/FN1895E-MCU101.git
git@gitee.com:F4NNIU/FN1895E-MCU101.git
F4NNIU
FN1895E-MCU101
FN1895E-MCU101
Development

搜索帮助